Preview

Storage and Processing of Farm Products

Advanced search

Monitoring of Water Activity in Lactulose-Containing Serum Technology

https://doi.org/10.36107/spfp.2021.191

Abstract

One of the main ways of enriching whey with prebiotic substances is to modify its composition by membrane electro-flotation followed by isomerization. As a result of these processes, a partial transition of serum lactose to lactulose occurs. In this work, we studied the nanofiltration concentration of the lactulose-containing serum obtained by this method in order to clarify the role of osmotic phenomena in this process. The dependence of the filtration rate of lactulose-containing flotated serum on the solids content undergoes a jump at a solids content of 8-10%. This is due to the fact that the boundary layers with a high concentration of lactose contain mainly water bound in hydration shells. Due to the concentration gradient of free water arising on the membrane, it diffuses through the membrane.. Measurement of water activity in lactulose-containing floated whey depending on the concentration of dry matter confirm this assumption. Based on these measurements, an estimate was made of the increase in the concentration of serum in the boundary layer compared to the volume, which turned out to be equal to 3.The effect of whey solids hydration on the filtration rate can be given a theoretical justification in the framework of a quantitative physical model linking filtration rate with water activity. It is established that the use of lactulose-containing food additives based on curd whey in the production of bakery products contributes to the production of a finished product with prebiotic properties. In addition, the use of modified curd whey will enrich the resulting product with minerals.

About the Authors

Elena I. Ponomareva
Voronezh State University of Engineering Technologies
Russian Federation


Sergey A. Titov
Voronezh State University of Engineering Technologies
Russian Federation


Vladimir N. Zhdanov
Voronezh State University of Engineering Technologies
Russian Federation


Julia P. Gubareva
Voronezh State University of Engineering Technologies
Russian Federation


Darina A. Tereshchenko
LLC "Domodedovo Catering”
Russian Federation


References

1. Azil'khanov, A. S., & Smol'nikova, F. Kh. (2013). Primenenie molochnoi syvorotki v khlebopechenii [The use of whey in bakery]. In Innovatsionnye tekhnologii v pishchevoi promyshlennosti: nauka, obrazovanie i proizvodstvo: Sbornik mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Innovative technologies in the food industry: science, education and production: Collection of the international scientific and technical conference] (pp. 69-72). Voronezh: Voronezhskii gosudarstvennyi universitet inzhenernykh tekhnologii.

2. Baulina, T. V., Shcherbakova, I. G., & Zubtsova, Yu. I. (2015). Primenenie v khlebopekarnom proizvodstve vtorichnykh molochnykh produktov [Application in bakery production of secondary dairy products]. Evraziiskii Soyuz Uchenykh [Eurasian Union of Scientists], 4, 23-26.

3. Khramtsov, A. G. (2007). Laktoza i ee proizvodnye [Lactose and its derivatives]. S-Petersburg: Professiya.

4. Khramtsov, A. G. (2011). Obogashchenie khlebobulochnykh i konditerskikh izdelii laktulozoi iz molochnogo syr'ya [Enrichment of bakery and confectionery products with lactulose from dairy raw materials]. Khlіbopekars'ka і konditers'ka promislovіst' Ukraїni [Bakery and confectionery industry of Ukraine], 3, 35-36.

5. Lazarev, S. I., Golovin, Yu. M., Khorokhorina, I. V., & Khokhlov, P. A. (2020). Issledovanie strukturnoi organizatsii poverkhnostnogo sloya i sostoyaniya vody v ul'trafil'tratsionnykh kompozitsionnykh membranakh [Investigation of the structural organization of the surface layer and the state of water in ultrafiltration composite membranes]. Fizikokhimiya Poverkhnosti i Zashchita Materialov [Physicochemistry of Surfaces and Protection of Materials], 56(2), 132-137. https://doi.org/10.31857/s0044185620020151

6. Leonidov, D. S. (2012). Prebiotik laktuloza: effektivnaya strategiya razvitiya zdorovogo pitaniya [Prebiotic lactulose: an effective strategy for the development of a healthy diet]. Pishchevye ingredienty, syr'e i dobavki [Food ingredients, raw materials and additives], 2, 36-39.

7. Lukin, A. A., Chaplinskii, V. V., & Dushkova, M. A. (2015). Biotekhnologicheskie aspekty ispol'zovaniya molochnoi syvorotki v tekhnologii khlebobulochnykh izdelii [Biotechnological aspects of the use of whey in the technology of bakery products]. APK Rossii [Agro-industrial complex of Russia], 72(2), 103-110.

8. Ryabtseva, S. A. (2003). Tekhnologiya laktulozy [Lactulose technology]. Moscow: DeLiprint.

9. Titov, S. A., Dovgun, N. P., & Zhdanov, V. N. (2014). Svoistva tvorozhnoi syvorotki posle elektroflotatsionnoi obrabotki [Properties of curd whey after electroflotation treatment]. Tekhnologii pishchevoi i pererabatyvayushchei promyshlennosti APK – produkty zdorovogo pitaniya [Technologies of the food and processing industry of the agro-industrial complex - healthy food products], 1(1), 79-83.

10. Tsyganova, T. B. & Stal'nova, I. A. (2009). Khleb s laktulozoi [Lactulose bread]. Konditerskoe i khlebopekarnoe proizvodstvo [Confectionery and bakery production], 11, 26-28.

11. Volodin, D. N., Topalov, V. K., Evdokimov, I. A., Chablin, B. V., & Zhurko, F. G. (2010). Primenenie baromembrannykh protsessov v tekhnologii sukhikh produktov [Application of baromembrane processes in dry product technology]. Pererabotka moloka [Milk processing], 8, 30-32.

12. Aguirre Montesdeoca, V., Bakker, J., Boom, R. M., Janssen, A. E. M., & Van der Padt, A. (2019). Ultrafiltration of non-spherical molecules. Journal of Membrane Science, 570-571, 322-332. https://doi.org/10.1016/j.memsci.2018.10.053

13. Bandini, S., & Morelli, V. (2017). Effect of temperature, pH and composition on nanofiltration of mono/disaccharides: Experiments and modeling assessment. Journal of Membrane Science, 533, 57-74. https://doi.org/10.1016/j.memsci.2017.03.021

14. Dey, P., Linnanen, L., & Pal, P. (2012). Separation of lactic acid from fermentation broth by cross flow nanofiltration: Membrane characterization and transport modelling. Desalination, 288, 47-57. https://doi.org/10.1016/j.desal.2011.12.009

15. Fadaei, F., Hoshyargar, V., Shirazian, S., & Ashrafizadeh, S. N. (2012). Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects. Desalination, 284, 316-323. https://doi.org/10.1016/j.desal.2011.09.018

16. Fuoco, A., Galier, S., Roux-de Balmann, H., & De Luca, G. (2018). Correlation between Computed Ion Hydration Properties and Experimental Values of Sugar Transfer through Nanofiltration and Ion Exchange Membranes in Presence of Electrolyte. Computation, 6(3), 42. https://doi.org/10.3390/computation6030042

17. Mattaraj, S., Jarusutthirak, C., Charoensuk, C., & Jiraratananon, R. (2011). A combined pore blockage, osmotic pressure, and cake filtration model for crossflow nanofiltration of natural organic matter and inorganic salts. Desalination, 274(1-3), 182-191. https://doi.org/10.1016/j.desal.2011.02.010

18. Oatley, D. L., Llenas, L., Pérez, R., Williams, P. M., Martínez-Lladó, X., & Rovira, M. (2012). Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Advances in Colloid and Interface Science, 173, 1-11. https://doi.org/10.1016/j.cis.2012.02.001

19. Rice, G., Kentish, S., O’Connor, A., Stevens, G., Lawrence, N., & Barber, A. (2006). Fouling behaviour during the nanofiltration of dairy ultrafiltration permeate. Desalination, 199(1-3), 239-241. https://doi.org/10.1016/j.desal.2006.03.058

20. Seker, M., Buyuksari, E., Topcu, S., Babaoglu, D. S., Celebi, D., Keskinler, B., & Aydiner, C. (2017). Effect of pretreatment and membrane orientation on fluxes for concentration of whey with high foulants by using NH3/CO2 in forward osmosis. Bioresource Technology, 243, 237-246. https://doi.org/10.1016/j.biortech.2017.06.101

21. Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and Purification Technology, 86, 119-126. https://doi.org/10.1016/j.seppur.2011.10.033


Review

For citations:


Ponomareva E.I., Titov S.A., Zhdanov V.N., Gubareva J.P., Tereshchenko D.A. Monitoring of Water Activity in Lactulose-Containing Serum Technology. Storage and Processing of Farm Products. 2021;(1). (In Russ.) https://doi.org/10.36107/spfp.2021.191

Views: 464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9669 (Print)
ISSN 2658-767X (Online)